Neural Network based Modeling and Simulation for the Optimization of Safety Logic

نویسنده

  • Neeraj Agarwal
چکیده

This thesis focuses on a knowledge based approach to reduce the incursion situation in an airport. In an effort to reduce the number of runway incursions the Federal Aviation Administration (FAA) is actively investigating automated systems to provide the air traffic controllers with early warnings about impending incidents. The Airport Movement Area Safety System (AMASS) is the first ground surveillance safety system that is being deployed at the 34 busiest airports in the United States. The optimization of the parameters, which control the safety logic algorithms that generate warnings of possible incursions, is a labor and time intensive endeavor. Currently AMASS uses over 200 safety parameter values for all airports independent of the organization or traffic flow of a specific airport. The thesis focuses on how neural networks are used to organize alert types in a semiautonomous process that will provide alerts to air traffic controllers as early as expediently. The methodology developed provides a generalized system that can be optimized independently for each airport and still generate warnings of possible incursions. Several networks exhibit good learning shown using different statistical parameters and could eventually be integrated with AMASS. Based on the current operations of neural networks it is projected that neural networks will use the AMASS log data and data filter software to extract necessary information. In the future the technologies discovered in these neural network models can help generate new versions of safety logic software for the advanced surveillance systems. Thesis Supervisor: Dr. Amar Gupta Title: Co-Director, Productivity From Information Technology (PROFIT) Initiative

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms

This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...

متن کامل

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

Optimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm

Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

Dynamic Analysis and Optimal Design of FLPSS for Power Network Connected Solid Oxide Fuel Cell Using of PSO

This paper studies the theory and modeling manner of solid oxide fuel cell (SOFC) into power network and its effect on small signal stability. The paper demonstrates the fundamental module, mathematical analysis and small signal modeling of the SOFC connected to single machine infinite bus (SMIB) system. The basic contribution of the study is to attenuate the low frequency oscillations by optim...

متن کامل

Reliability-Based Robust Multi-Objective Optimization of Friction Stir Welding Lap Joint AA1100 Plates

The current paper presents a robust optimum design of friction stir welding (FSW) lap joint AA1100 aluminum alloy sheets using Monte Carlo simulation, NSGA-II and neural network. First, to find the relation between the inputs and outputs a perceptron neural network model was obtained. In this way, results of thirty friction stir welding tests are used for training and testing the neural network...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002